

FEATURES

- Wide operating voltage: 1.8V ~ 5.5V.
- Low Voltage Reset (LVR=1.8V) is supported.
- One 10-bit PWM output. There are 2 kinds of PWM output, normal and large. It can directly drive 8, 16, 32, 64Ω speaker.
- Only build in an accurate internal oscillator of +/- 0.5% tolerance, no external R oscillator.
- There are 4 kinds of output current option for all output pins.
 - (a). Normal Sink Current output: Output is connected a LED with VDD. (Iol=22mA/33mA @VDD=3V/4.5V)
 - (b). Large Sink Current output: Output is connected a LED with VDD. (IoI=65mA/85mA @VDD=3V/4.5V)
 - (c). Constant Sink Current output: Output is connected a LED with VDD. Whenever VDD is 3V or 4.5V, the output current is constant and LED brightness is uniform. (IoI=20mA/21mA @VDD=3V/4.5V)
 - (d). Drive Current output: Output is connected a LED with GND. (Ioh=7mA/11mA @VDD=3V/4.5V)
- There are 9 kinds of output option for all output pins:
 - (a). Stop Low pulse: Low active stop-pulse output whenever device stops playing.
 - (b). Stop_High pulse: high active stop-pulse output whenever device stops playing.
 - (c). Busy High active: high active signal output during playing. (Drive output)
 - (d). Busy_Low active: low active signal output during playing. (Sink output)
 - (e). LED 3Hz flash: 3Hz sink signal output to drive LED during playing.
 - (f). LED 6Hz flash: 6Hz sink signal output to drive LED during playing.
 - (g). LED 12Hz flash: 12Hz sink signal output to drive LED during playing.
 - (h). LED dynamic 1/2: according to 1/2 sound level, dynamic sink signal output to drive LED during playing.
- Input option for input pin:
 - Each input can select Edge/Level, Hold/Unhold and Retrigger/Irretrigger trigger modes.
 - Each input can select 300K 1.5M pull-low resistor or Floating type.
 - Each input can select Debounce time: Long debounce for push-button. Short debounce for fast switch.
 - . Only one input pin can select Toggle On/Off function (1st Trigger \rightarrow play, 2nd trigger \rightarrow stop,).

PAD DESCRIPTION

Pad Name	Pin No.	ATTR.	Description			
IO3	1	I/O	Output or input pin. To be input, active high.			
PWM2	2	0	PWM output 2			
PWM1	3	0	PWM output 1.			
VDD	4	Power	Positive power.			
GND	6	Power	Negative power.			
IO1	3	I/O	Output or input pin. To be input, active high.			
OKY1	7	1	Input pin, active high.			
IO2	8	I/O	Output or input pin. To be input, active high.			

ABSOLUTE MAXIMUM RATING

Symbol	Rating	Unit
VDD~GND	-0.5 ~ +7.0	V
Vin	GND-0.3 < Vin < VDD+0.3	V
Vout	GND < Vout < VDD	V
Top (operating)	-0 ~ +70	°C
Tst (storage)	-55 ~ +150	∘C

DC CHARACTERISTICS

Symbol	Parameter	VDD	Min.	Тур.	Max.	Unit	Condition
VDD	Operating voltage		1.8	3.0	5.5	V	1.54MHz
I _{SB}		3.0		0.1	0.5	uA	LVR and POP disabled
	Standby current	4.5		0.1	0.5		
	Standby current	3.0		1.0			LVR or POP enabled
		4.5		2.0			
I _{OP}	Operating current	3.0		0.4		mA	No load.
	Operating current	4.5		0.7			
I _{IH}	Input current	3.0		2		uA	V _{IL} =VDD
	(1.5M ohms pull-low)	4.5		5			
	Input current	3.0		30		uA	
	(300K ohms pull-low)	4.5		85		uA	
I _{OH}	Output drive current	3.0		-7		mA	V _{OH} =2.0V
IOH	Catout arive carrein	4.5		-11			V _{OH} =3.5V
I _{OL}	Output normal sink current	3.0		22		mA mA	V _{OL} =1.0V
	Catpat Hormal Clint Carlotte	4.5		33			
	Output large sink current	3.0		65			
	Catput large on it can one	4.5		85			
	Output constant sink current	3.0		20		mA	
	Calput Constant Const Call	4.5		21			
I _{PWM}	PWM output current	3.0		60		mA mA	Load=8 ohms
	(Normal)	4.5		100			
	PWM output current	3.0		70			
	(Large)	4.5		117			
ΔF/F	Frequency deviation	3.0		0.1		%	Fosc(3.0v)-Fosc(2.4v) Fosc(3v)
	by voltage drop	4.5		-0.1		76	Fosc(4.5v)-Fosc(3.0v) Fosc(4.5v)
	Frequency lot deviation	1220	-0.5		0.5	%	Fmax(VDD)-Fmin(VDD) Fmax(VDD)
Fosc	Oscillation Frequency		1.50	1.54	1.58	MHz	VDD=1.8~5.5V

TIMING DIAGRAM

(1) Debounce Time

(a). Trigger while no playing voice

☼ Debounce time is configured by 6.67 kHz S.R and the value is fixed. That is, Long debounce=31ms, Short debounce = 42us

(b). Trigger While playing voice

Debounce Time is configured by the S.R. of Step_x. At S.R. = 6kHz, Long debounce = 45ms, Short debounce = 50us
 For example, if Step_x S.R. = 8kHz, Long debounce = 45ms*(6k/8k) = 15ms, Short debounce = 50us*(6k/8k) = 37.5us

(2) Input Priority

(3) Output Signal (IO1, IO2, IO3, O4)

LED dynamic 1/2: When the voice amplitude is higher than 1/2 level, LED will be ON, i.e. output signal is low.

(4) Basic Operation

(a). Edge mode, Edge trigger

(b). Edge mode, Level trigger

(c). Level mode, Edge trigger

(d). Level mode, Level trigger

(e). Retrigger mode

(f). Irretrigger mode

(g). Retrigger mode, first key priority

(5) Advanced Operation

(a). Different Input Reload (OKY1 is in Sequential mode)

(a-1) OKY1 (E/U/R) = S1 S2 S3 S4, IO1(E/U/R) = S5 (S1 means Sentence 1)

(a-2) OKY1 (E/U/R) = S1 S2 S3 S4, IO1 (L/x/x) = S5

^{*1:} If you press IO1 during OKY1 voice playing, at the moment of S1 end, the trigger mode follows OKY1

(a-3) OKY1 (E/U/I) = S1 S2 S3 S4, IO1 (E/x/x) = S5

^{*2:} Because IO1 signal is still high in the same time IC can't accept the OKY1 Edge signal.

(a-4) OKY1 (E/U/I) = S1 S2 S3 S4, IO1 (L/x/x) = S5

(a-5) OKY1 (L/U/x) = S1 S2 S3 S4, IO1 (E/x/x) = S5

- In the time of Sentence end: When S1 end, the trigger mode follows OKY1 (L/U/x). When S5 end, it follows IO1 (E/x/x).
- Once S5 is played (just leave S1 ending), the trigger mode follows IO1 (E/x/x) immediately.

(a-6) OKY1 (L/U/x) = S1 S2 S3 S4, IO1 (L/U/I) = S5

*3: In OKY1 mode, Sequential number is counted only if there is debounce happened.

*4: In OKY mode, 1st trigger without debounce and Sequential number is still "1". 2nd trigger with debounce, after trigger the Sequential number become "2".

(b). Random Function

(b-1) OKY1 (L/U/I) =S1 S2 S3 S4, IO1 (L/U/I) =S5

Random (or Sequential) number is counted during "debounce time" or "key released time". But the first-time trigger only relies on "debounce time" due to no "key release time".

x=1, 2, 3 or 4; y=1, 2, 3 or 4 (x and y are random number)

(b-2) OKY1 (L/U/R) =S1 S2 S3 S4, IO1 (L/U/R) =S16

(c). Toggle On/Off Function

(c-1) OKY1 (E/U/R) =S1 S2 S3 S4, IO1 (E/U/R) =S5 (OKY1 is Sequential mode without Reset)

(c-2) OKY1 (E/U/R) =S1 S2 S3 S4, IO1 (E/U/R) =S16 (OKY1 is Sequential mode with Reset)

When OKY1 Sequential counter is going, to trigger other inputs will reset OKY1 Sequential sequence.

(d). External Feedback Function (IO1 is output and connected to OKY1 input)

(d-1) OKY1 (L/U/I) =S1 S2 S3 S4, IO1=Stop_high pulse (When voice ends, IO1 shows a high pulse.)

Moriginally the duration of Stop_high pulse is 172ms at 6kHz, but the high signal will trigger voice and turn low after debounce.

(d-2) OKY1 (E/U/I) = S1 S2 S3 S4, IO1= Busy_low (When not playing voice, IO1 is high.)

* When power on. IO1 will generate a high pulse at Busy low status and the duration is equal to debounce time.

(e). Internal-Feedback Function (OKY1/O5 is fixed as input)

Each sentence can assign an Internal-Feedback Path to play a fixed sentence after IO's sentence stop.

(e-1) OKY1 (L/U/I) = S1 S2 S3 S4, OKY2 = S5, Internal-Feedback Path = OKY1/O5 → OKY2

If S1 is optioned with Internal-Feedback Path,

(e-2) OKY1 (L/H/I) = S1 S2 S3 S4, OKY2 (x/x/R) = S5, IO2 (E/U/I) = S6, Internal-Feedback Path = OKY1/O5 → OKY2

If both S1 and S5 are optioned with Internal-Feedback Path,

(f). Table-Random Function

When power in on, a random number is counted automatically. The first-time trigger will play the sentence of random number (Sx), and the next trigger will be sequential.

(f-1) OKY1 (E/U/R) = \$3 \$2 \$5 \$4 \$1 \$3 \$2 \$x \$5 \$3 \$2 \$4 \$1 \$3 \$2 \$5 \$1 \$4 \$5 \$3 \$1 \$2

(g). Pause-Resume Function

(g-1) OKY1 (L/U/R) = S1 S2

(h). Motor-Recover Function

(h-1) OKY1 (E/U/R) = S1 S2 S3 S4, IO2= Busy_low (OKY1 is Toggle On/Off and OKY2 is connected to sensor.)

^{*5:} If motor doesn't stop at initial position when voice stop playing, IO2 will output one kind of signal (DC, 15Hz or 30Hz option) to keep motor moving to initial position.

(h-2) OKY1 (E/U/R) = S1 S2 S3 S4, IO2= Busy_low (OKY1 is Toggle On/Off and OKY2 is connected to sensor.)

^{*6:} If motor doesn't stay at initial position when power-on, IO2 will output one kind of signal (DC, 15Hz or 30Hz option) to keep motor moving to initial position.

(i). Serial-Trigger Function (All inputs must be set as short debounce)

OKY1 (E/U/R) =S1 S2 S3 S4, IO1 (E/U/R) =S5 (OKY1 Reset is enabled, and S5 is a short mute Sentence)

- The above is the simplest 2-wire control by external MCU. If necessary, user can use 3-wire control with Busy_High output signal to do feedback.

APPLICATION

(1) 1 trigger with 3 LEDs (Sink)

(2) 2 triggers with 2 LEDs (Sink)

- (3) 1 triggers with 2 LEDs (Sink) and 1 motor (Drive)
- (4) 2 triggers with 1 LED (Sink) and 1 motor (Sink)

Note: C1 is VDD power cap, please MUST connect a 0.1uF cap between VDD and GND, or there will be noise while playing voice.